DOCUMENT TYPE: 1991 PROCEEDINGS
TITLE: SIZING DB2 APPLICATIONS - PART II
AUTHOR: David J. Young

AFFILIATION: Hitachi Data Systems Corporation

This paper builds upon the information presented in Part |. The SET QUERY
WORKLOAD as defined by Dr. Pat O'Neil was implemented in a multi-user
MVS/ESA 4.1, CICS/ESA 3.1, DB2 2.2 environment The queries were then
executed, varying the amount of data processed from 1,000 rows to 1,000,000
rows. This paper examines how increasing the amount of data processed
affects DB2 resource consumption and application CPU prediction. It also
discusses why DB2 chooses different access paths for similar queries, and
how the resource costs of those access paths differ. A brief discussion of

the relationship between CICS and DB2 performance statistics is also
included.

SIZING DB2 APPLICATIONS - PART II

David J. Young
Hitachi Data Systems Corporation

Abstract

This paper builds upon the information presented in Part I. The SET QUERY WORKLOAD as defined by Dr. Pat
O’Neil was implemented in a multi-user MVS/ESA 4.1, CICS/ESA 3.1, DB2 2.2 environment. The queries were then

executed, varying the amount of data processed from 1,000 rows to 1,000,000 rows.

This paper examines how

increasing the amount of data processed affects DB2 resource consumption and application CPU prediction. It also
discusses why DB2 chooses different access paths for similar queries, and how the resource costs of those access paths
differ. A brief discussion of the relationship between CICS and DB2 performance statistics is also included.

1. CONFIGURATION

The experiments were conducted on an IBM 3090-280J.
The 3090 was physically partitioned into two 3090-180Js,
each with 128MB of real storage and 128MB of
Expanded Storage. The processors were in BASIC
mode, with the driver machine connected to the driven
machine via a channel-to-channel adapter. Twelve
3380K-type devices were used: three for the operating
system, three for DB2, one for CICS, and five for
work/storage volumes.

MVS/ESA 4.1 at maintenance level 9006 was the base
operating system. DB2 2.2 was used as the DBMS.
CICS/ESA 3.1 was used as the teleprocessing monitor.
One CICS region was used (no MRO) to service the
1,000 users. Entry-level threads were initially defined in
the RCT for processing the 71 DB2 transactions, which
led to erratic response times and unrepeatable
measurements. Pool threads were defined instead, which
caused a slight increase in CPU per transaction, but
smoothed out the erratic response times and led to more
repeatable measurements. The Structured Translator
Language (STL) feature of TPNS 3.1 was used to
simulate the 1,000 users in the driver machine.

2. WORKLOAD DESCRIPTION

The SET QUERY workload is an attempt at a
standardized Decision Support workload, along the same
lines as the work done by the Transaction Processing
Council.

Slight modifications have been made to the original
workload. 1,000 users executed transactions, versus a
single user. The size of the data base was increased from
1 million to 2.5 million, with an eventual table size of 100

I

million rows. Finally, a range was added to each query to
allow control over the amount of data processed per
query, and to allow the even spreading of I/O activity
across the DASD farm.

Figure 1 - RUNSTATS Data

Colname Fullkeycard Nleaf
KSEQ 2,500,000 5788
K500K 1,080,677 6097
K250K 613,430 4738
K100K 249,987 3682
K40K 100,000 3244
K10K 25,000 3034
Ki1K 2,500 2957
K100 250 2949
K25 62 2949
K10 25 2949
K5 12 2949
K4 10 2949
K2 5 2949

The DB2 table used in the experiments consists of 2.5
million 200 byte rows. Figure 1 contains relevant
RUNSTAT data for the benchmark table. Each row has
thirteen indexed binary fields and eight nonindexed
character fields. ©Of the thirteen indexed fields, one
(KSEQ) is unique, with a clustering index; and the other
twelve are not unique, with a FULLKEYCARD
(cardinality) ranging from 1,080,677 (KSO0K) to §
(K5K). One of the premises of the benchmark is that
this table is updated very infrequently, otherwise the
thirteen indexes could become quite a performance
problem.

The DB2 processing for the 71 queries fell into one of six
categories: nonclustered index with data access and list
prefetch (9 queries); multiple index access and list
prefetch (20 queries); clustered index with data access
and sequential prefetch (41 queries); clustered index with
data access, sequential prefetch and a sort (3 queries);
clustered index with data access, no prefetch (5 queries);
and nonclustered index only (1 query). The queries
within each group also had very similar CPU
requirements, in addition to having the same DB2
processing requirements. One query from each of the
first four groups, as well as a JOIN query, will now be
examined in detail, including the SQL statement and
EXPLAIN data, measurement data summary, the
spreadsheet formulas used to predict CPU consumption,
and actual versus predicted CPU.

3. MEASUREMENT RESULTS

Figure 2 graphs the CPU consumption for the five query
categories: 1. Q101 (nonclustered index with data
access, list prefetch), 2. Q103 (multiple index access
using list prefetch), 3. Q105 (clustered index with data
access, sequential prefetch), 4. Q501 (clustered index
with data access, sort), and 5. Q610 (a JOIN query). All
71 queries were executed concurrently for the 1,000-,
5,000-, 10,000-, 50,000- and 100,000-row experiments.
The 1,000,000-row tests were executed one at a time, due
to the obvious time constraints. Because of the large
differences in both CPU consumption and the number of
rows processed, a log/log graph was used to display the
results.

Figure 2 - CPU Consumption

Number Rows Processed Versus CPU
Selected Transactions
CPU SECONDS
00
100 E
of
th
o1t
0.01 -
0-001> 1 I RSN A3t (1111l 1 4 1 1esn 1 L Lirenn i 1 1 1ahit
100 1000 10000 100000 1000000 1000000
NUMBER ROWS
— Q101 —— Q103 —+ Q105 —° Q501 —— Q810

As mentioned earlier, the CPU consumption for each
query type was very similar, and followed the lines
displayed in Figure 2.

3.1 Q101

Category 1 transactions are processed by accessing a
nonclustered index and its data using LIST PREFETCH.
Q101, which falls into this category, and its associated
EXPLAIN data are illustrated in Figure 3. As
mentioned earlier, a range was added to each query to
allow control over the amount of data processed and to
make it easier to evenly spread I/O activity. This is
accomplished via the "WHERE KSEQ BETWEEN
:LOWNUM AND :HIGHNUM’ clause. LOWNUM and
HIGHNUM are generated by TPNS, and are sent to
CICS along with the transaction code. According to the
explain data, DB2 will use the index built on K250K
(SQ10INO3) and list prefetch to retrieve the desired
rows. Figure 4 summarizes the measurement data for
Q101 at 1,000, 3,000, 10,000, 50,000, 100,000 and
1,000,000 rows.

Figure 3 - Q101 SQL & EXPLAIN Data

SELECT * FROM DAVID.SQ10
WHERE KSEQ BETWEEN :LOWNUM
AND :HIGHNUM

AND K250K =2
METHOD ACCESS ACCESS
TYPE NAME
0 I SQ10IN03
INDEX SORT PRE MIXOPSEQ
FETCH
Y N S 0

Figure 4 - Q101 Measurement Data

CPU GET SYNC PRE LOCK UNLK
PAGE READ FETCH
0.0030 6 0 1 5 5
0.0029 6 0 1 5 5
0.0029 6 0 1 5 5
0.0038 6 2 1 5 5
0.0047 7 4 1 S 5
0.0089 19 11 1 13 13

The CPU requirements for this transaction are very small
due to the high cardinality of K250K. K250K has
613,430 unique values, ranging from 1 to 625,000. Since
there are 2,500,000 total rows, approximately four of
those rows have a value of 2. To satisfy the query, the
four rows are retrieved and inspected to see if their
KSEQ values fall between LOWNUM and HIGHNUM.

The formulas for predicting CPU consumption are
illustrated in Figure 5 in a spreadsheet format.

Figure 5 - Q101 Spreadsheet Formulas

Figure 6 - Q101 Actual Versus Predicted CPU

B3: 1000

B4: (((0.1818+(0.005*2))* @INT(B3/613340) +1)))
BS: ((@INT(B3/613430) +1)*0.0182

B6: (@INT(B3/613430)+1%0.3636

B7: (B4+B5+B6)/1.1

BS: (B7/1000)

1GPU SECONDS

e

B3 indicates the number of rows to process. B4
computes the CPU required to process the qualified
rows. The number of qualifying rows is estimated by
dividing the number of rows to process (1,000) by the
FULLKEYCARD value for K250K (613,340). BS
indicates the CPU required to scan rows for
qualification. B6 estimates the CPU needed to drive the
I/Os to retrieve the appropriate rows. B7 sums the CPU
needed to scan the rows, process the qualifying rows, and
drive the I/Os. B7 divides the total by 1.1 because the
formulas presented in Capacity Planning for DB2
Applications are based on a 3090-180S, whereas the
measurements were conducted on a 3090-180J, which has
more processing power. The 1.1 figure is taken from
page 105 of the document just mentioned. Finally, B7
converts the milliseconds just computed into seconds, by
dividing by 1,000.

Both the actual and predicted CPU requirements are
very small, as shown in Figure 6. This is due mainly to
the high cardinality of the index through which access is
made. If the cardinality of the index were lower (if there
were more duplicate keys), the DB2 Optimizer would
probably choose a different access path, as shown in the
case of Q103.

1.000E-03 -
1‘000E-°‘ i 1 1 J111d1 1 Iyl A4 3 1al1i A 1 & 1831 14 1L1L
100 1000 10000 100000 1000000 1000000(
NUMBER ROWS
-— ACTUAL —* PREDICTED
3.2 Q103

Category 2 transactions, like Q103, are processed by
ANDing or ORing multiple indexes and retrieving the
resulting pages via LIST PREFETCH. Its associated
SQL statement and EXPLAIN data are illustrated in
Figure 7.

Figure 7 - Q103 SQL and EXPLAIN Data

SELECT COUNT(*) FROM DAVID.SQ10
WHERE KSEQ BETWEEN :LOWNUM
AND :HIGHNUM
AND K100K = 2;
METHOD ACCESS ACCESS
TYPE NAME
0 MI
0 MX SQ10INO1
0 MX SQ10IN06
0 M
INDEX SORT PRE MIXOPSEQ
ONLY FETCH
N N 3
Y N 2
Y N 1
N N L 0

The difference between this transaction and Q101 is the
cardinality of the indexed field. In Q101, there are only a
few rows whose K250K is equal to 4, while in Q103 there
are somewhere near 100 rows which have a K10K = 4.
This value is computed by dividing the total number of
rows in the table by the number of unique entries or
FULLKEYCARD for that index. This also assumes that

the number in each indexed field is randomly) generated
from 1 to the FULLKEYCARD value for that index
[Reference (4)]. This could result in 100 synchronous
reads, which the optimizer thinks is too expensive, so it
chooses to access the indexes only using LIST
PREFETCH and AND the resulting Row IDs (RIDs)
from both indexes to determine the answer set. The
spreadsheet formulas for predicting CPU consumption
are shown in Figure 8.

Figure 8 - Q103 Spreadsheet Formulas

B14: 1000

B15: 5788

B16: 2500000

B17: 2500000

B18: (B17/B18)

B19:.303+(0.1212*(1+ @INT((B14/B16)*B15)))
B20: (B14*0.0054)

B21: (1+@INT((B14/B16)*B15))*0.3636

B22: (B19+B20+B21)

B26: 100

B27: 3034

B28: 2500000

B29: 25000

B30: (B28/B29)

B31: 0.303+(0.1212*(1+ @INT((B26/B28)*B27)))
B32: (B26*.0054)

B33: (1+@INT((B26/B28)*B27))*0.3636
B34: (B31+B32+B33)

B36: ((B14+B26)*0.0121)

B37: ((B14+B26)*.0038)

B39: ((B22+B34+B36+B37)/1.1

B40: (B39/1000)

B41: 0.0133

The total CPU for this transaction consists of the time
needed to scan both indexes, extract the relevant RIDs,
sort the RIDs, and AND the RID lists to determine the
resulting answer set. B14 through B22 compute the CPU
required to scan SQ10INO1. This time will vary, as does
the number of rows processed. B14 contains the total
number of rows, which in this case is 1,000. B15 contains
the number of index pages for SQ10INO1. The total
number of rows in the table (B16), divided by the number
of unique entries in the index (B17), gives the number of
duplicates (B18). The cost of processing the index pages
is computed in B19 by dividing the number of rows
accessed (B14) by the total number of rows in the table
(B16), and then multiplying the quotient by the number

14

of pages in the index (B15). The time to process the
RIDS is computed by multiplying the number of RIDs
(B14) by 0.0054 milliseconds. The CPU to drive the I/Os
is computed in B21, and the total CPU needed to scan
this index is summed in B22.

The cost of processing index SQ10INO1 will vary, as does
the number of rows between :LOWNUM and
:HIGHNUM. The cost for processing index SQ10IN06
is computed the same way, but remains constant across
all 6 measurement points because only one unique value
is requested, versus the range of values for SQ10INOL.
The remaining calculations for this query consist of
sorting the RIDs (B36), and ANDing the RIDs (B37).

Figure 9 summarizes the measurement data for Q103.
The actua] versus predicted CPU is graphed in Figure 10.

Figure 9 - Q103 Measurement Data

CPU GET SYNC PRE Lock/Unlock
PAGE READ FETCH

00133 8 0 1 22/22

00741 19 0 1 104/104

0.1461 31 0 1 195/195

0.8376 123 4 1 931/931

1.810 243 60 1 1860/1860

3.553 1560 1455 4 11681/11681

Figure 10 - Q103 Actual Versus Predicted CPU
100 CPU SECONDS

0.01— L / FESTOTE TP
100 1000 10000 100000 1000000 10000004

NUMBER ROWS

—— ACTUAL — PREDICTED

Notice that as the number of rows processed increases,
the actual versus predicted CPU starts to converge,
except for the last measurement point which has a
predicted CPU of approximately 20 seconds and an
actual CPU of 3.5 seconds. This phenomenon was also
observed in the other category 2 transactions, with an
almost linear increase in actual CPU for the first five

measurement points, and then a sharp drop for the last
measurement point of 1,000,000 rows. The reasons for
this are not apparent.

3.3 Q105

Category 3 transactions, like Q105, are processed by
accessing the clustered index built upon KSEQ, and
using sequential prefetch to retrieve the data. Category 3
transactions yield the most accurate predictions, while
the increase in CPU increases linearly with the increase
in rows processed. Q105’s SQL and EXPLAIN data are
illustrated in Figure 11.

The main difference between Q105 and Q103 is again the
cardinality of the indexed field K100. In Q101, the
cardinality was relatively high, causing the optimizer to
access the rows directly via the index on K250K. In
Q103, the cardinality was lower than that of Q101,
causing the optimizer to choose multiple index only
access. In this query (Q105), the cardinality of the
indexed field is even lower than that of Q101 and Q103.
Q101 has 4 duplicate keys with a value of 2; Q103 has
100 duplicate keys with a value of 2; and Q105 has
approximately 10,000 duplicate keys with a value of 2.
For these reasons, the optimizer decided the cheapest
way to process this query was to access every row with a
KSEQ between :LOWNUM and :HIGHNUM via the
clustered index on KSEQ, and then test each row for a
K100 value of 2.

Figure 11 - Q105 SQL & EXPLAIN Data

SELECT COUNT(*) FROM DAVID.SQ10
WHERE KSEQ BETWEEN :LOWNUM
AND :HIGHNUM

AND K100 = 2;
METHOD ACCESS ACCESS
TYPE NAME
0 I SQ10INO1
INDEX SORT PRE MIXOPSEQ
ONLY FETCH
N N S 0

The spreadsheet formulas for predicting Q105’s CPU
consumption are displayed in Figure 12.

Figure 12 - Q105 Spreadsheet Formulas

B44: 1000

B45: (B44*0.0182)

B46: (0.1818+(.005*2))*(1/250*B44)

B47:

((@INT((B44/18)/32)+1))*(0.4242+ (32*0.0272))
B48: (B45+B46+E47)/1.1

B49: (B48/1000)

B50:0.0216

The total CPU for this transaction includes the time to
read the pages, scan them for qualifying rows, and then
process the qualifying rows. The CPU time to read the
pages (B47) is computed by determining the number of
prefetch reads and multiplying that by the CPU time to
process a sequential prefetch read of 32 pages. The total
number of pages to read is computed by dividing the
total number of rows (B44) by 18 (the number of rows
per page), and then dividing that quotient by 32 (the
number of pages sequentially prefetched). The time to
scan the 1,000 rows (B45) is computed by multiplying the
total rows scanned (B44) by 0.0182 milliseconds. The
time to process the qualifying rows (B46) is computed by
estimating the total qualifying rows (1/250*B44) by a
factor which takes into account the number of columns
processed.

Figure 13 summarizes the measurement data for Q105.

Figure 13 - Q105 Measurement Data

CPU GET SYNC PRE Lock/Unlock
PAGE READ FETCH
0.0216 61 0 1 77177
0.0999 298 0 8 380/380
0.1929 582 0 17 7437143
0.9658 2896 16 106 3705/3705
1.934 5790 21 203 7409/7409
1931 57884 9 1816 74079774079

The actual versus predicted CPU consumption for Q105
is graphed in Figure 14. The predicted CPU is very close
to the actual CPU for all six measurement points, and
the increase in CPU utilization compared to the number
of rows processed is linear across all six measurement
points.

Figure 14 - Q105 Actual versus Predicted CPU

Figure 16 - Q501 Measurement Data

CPU GET SYNC PRE Lock/Unlock
PAGE READ FETCH
0.1435 73 0 1 79776
0.5814 305 0 8 376/373
1.253 594 0 17 7461743
539 2942 3 96 3711/3705
9.959 5846 11 199 7416/7416
91.98 58228 11 1814 74126/74089

CPU SECONDS
100
e
1E
0.1
s
0.01L——iiiun 0 i Lot 4o 0w
100 1000 10000 100000 1000000 1000000¢
NUMBER ROWS
—— ACTUAL _—*— PREDICTED
3.4 Q501

Category 4 transactions, just like Q501, are processed by
accessing a clustered index and its associated data with
sequential prefetch, and then sorting the results table.
The sort is required due to the GROUP BY clause as
illustrated in Figure 15.

Figure 15 - Q501 SQL & EXPLAIN Data

SELECT K2, K100, COUNT(*) FROM
DAVID.SQ10
WHERE KSEQ BETWEEN :LOWNUM
AND :HIGHNUM
GROUP BY K2, K100,

METHOD ACCESS ACCESS
TYPE NAME

3

0 I SQ10INO1
INDEX SORT PRE MIXOPSEQ
ONLY FETCH

N Y 0

N N S

The measurement data for Q501 is summarized in Figure
16.

16

The formulas for predicting CPU consumption are the
same for Q501 as for Q105, with the added attraction of
computing SORT CPU. The formulas are displayed in
Figure 17.

The total CPU for this transaction includes the time to
read the pages, scan them for the qualifying rows, process
the qualifying rows via a GROUP BY SORT, and fetch
the resulting rows. B3 indicates the number of rows to
process. B4 estimates the CPU needed to drive the
PREFETCH 1/Os. The formula in B3 is a condensed
version of the same formula from B47 for Q105. BS
estimates the CPU needed to scan and process the
qualifying rows. In Q105, only one out of every 250 rows
qualifies, even though every row must be scanned within
the bounds of LOWNUM and HIGHNUM. In this
query, every row is be scanned and qualified between the
bounds of LOWNUM . and HIGHNUM. B6 computes
the estimated CPU for sorting the rows to satisfy the
GROUP BY clause. Approximately 250 unique rows are
left after the GROUP BY, and the CPU time to FETCH
these rows is computed by B7.

Figure 17 - Q501 Spreadsheet Formulas

B3: 10000
B4: ((@INT((B3/18)/32)+1)*1.2946)

BS: ((0.1818+(0.005*2))*B3)+(B3*0.0182)
B6: 3.94+((0.1078+(0.0036*2))*B3

B7: (0.0545+(0.0021*2))*250

B8: (B4+B5+B6+87)

B9: (B8/1000)

B10: (B9/1.1)

Both the actual and predicted CPU for Q501 are linear
as the number of rows processed increases, but the
estimated CPU is almost three times the actual CPU, as

illustrated in Figure 18. At this time, it is not apparent
why the predicted and actual CPU values are so different.

Figure 18 - Q501 Actual Versus Predicted CPU

o CPU SECONDS

100

0
1E

0.1 PR T TH S A E T S S T A W S T TS S SU W R T T
100 1000 10000 100000 1000000 10000004

NUMBER ROWS
—— ACTUAL __—— PREDICTED
3.5 Q610

The last query we will examine is Q610. This query is
processed via a nested loop join, and is illustrated in
Figure 19.

Figure 19 - Q610 SQL & EXPLAIN DATA

SELECT COUNT(*) FROM DAVID.SQ10T1,
DAVID.SQ10 T2

WHERE T1.KSEQ BETWEEN :LOWNUM
AND :HIGHNUM

AND T1KI1K = 49

AND T1.K250K = T2.K500K

AND T2.K25 =19

METHOD ACCESS ACCESS P#
TYPE NAME

1 I SQ10INO2 2

0 I SQ10INO1 1

INDEX SORT PRE- MIXOPSEQ

ONLY FETCH

N N L 0

N N S 0

Before getting to the CPU formulas, let’s break up the
processing into manageable chunks. Three things need
to be accomplished: Read and qualify the rows from
table 1; read and qualify the rows from table 2; and JOIN
the results. Access to rows from table 1 is made through
the primary clustered index SQ10INO1. Access to rows
in table 2 is made through SQI0INO2, the index on

KS00K. This makes it appear that DB2 will attempt to
retrieve from table 2 only those rows whose K500K is
equal to table 1’'s K250K. The bottom line is that this
significantly reduces the number of rows which need to
be retrieved from table 2.

The spreadsheet formulas for predicting Q610’s CPU
consumption are illustrated in Figure 20.

B4 computes the CPU to drive table 1's I/Os using
sequential prefetch. BS computes the CPU to process
table 1’s retrieved pages. B6 computes the CPU to drive
table 2’s I/Os using list prefetch, and B7 computes the
CPU to process table 2’s retrieved pages.

Figure 20 - Q610 Spreadsheet Formulas

B3: 1000

B4: ((@INT((B3/18)/32+1)*1.2946

BS: ((0.1818+(0.005*2))*B3/250)+(B3*0.0182)

B6: ((@INT(B3/250/2)+1)*0.3636)

B7: ((0.1818+(0.005*2))*B3/250/2)
+(B3/250/2*0.0182)

B8: (0.3636+(0.0052*1))*(B3/250)

B9: (0.2424+(0.0052*1))*((B3/250)/62/2)

B10: (B8+(B3/250*B9))

B11: (B4+B5+B6+B7+B10)/1.1/1000

B12: 0.0238

The CPU required to perform a nested loop JOIN of the
two tables consists of the CPU to process the outer and
inner table. B8 computes the CPU to process the outer
table, and multiplies it by the estimated number of
qualifying rows (B3/250). Accurately estimating the
number of qualifying rows is tough to do, as we will see
later. B9 computes the CPU to process the inner table,
and multiplies it by the estimated number of qualifying
rows (B3/250/62/2). For a 1,000-row execution, the
estimated JOIN CPU is only 1.5 milliseconds, a very
small amount. For a 1,000,000-row execution, the
estimated number of qualifying rows is 4,000 for the
outer table and 32 for the inner table, which could result
in over 33 CPU seconds to join the two tables.
Accurately estimating the number of qualified rows is
important, as well as difficult. This is illustrated in B10,
which computes the total CPU required for the JOIN.
B10 combines the CPU for table 1 (B8) with the product
of the estimated number of qualifying rows from table 1
(B3/250) and the CPU for scanning the estimated
number of rows from table 2 (B9).

The measurement data for Q610 is summarized in Figure
21.

Figure 21 - Q610 Measurement Data

CPU GET SYNC PRE Lock/Unlock
PAGE READ FETCH

0.0238 72 0 3 83/83
0.1224 422 0 29 462/462
0.2235 777 1 53 860/860
1.192 3911 162 268 4318/4318
2.417 7807 391 574 8626/8626
23.69 78843 3236 5389 86719/86718

The actual versus predicted CPU is illustrated in Figure
22. There is a linear increase in actual CPU for all the
measurement points. The last point for the predicted
CPU takes a strange jump upwards. The data tables in
Appendix B indicate a huge increase in the predicted
CPU for the JOIN.

Keep in mind that this value is only as good as the
estimated number of qualified rows for the JOIN. It
appears that the estimated number of qualifying rows for
the final measurement point was in error.

Figure 22 - Q610 Actual Versus Predicted CPU

CPU SECONDS
100 ¢
10F
1k
0.1k
0.01 L IS T A T TIT RO ST B U FTTT) Lo
100 1000 10000 100000 1000000 10000004
NUMBER ROWS
—— ACTUAL _—— PREDICTED
4. SUMMARY

The majority of transactions examined in this paper
exhibit a linear increase in CPU consumption as the
amount of processed data increases from 1,000 to
1,000,000 rows. An exception to this rule are
transactions that use multiple index access and list
prefetch to satisfy the query.

If we assume that the SET QUERY workload is
representative of Decision Support-type applications, the
techniques for predicting DB2 CPU consumption
presented in "The Set Query Benchmark" (see
"References Section”) and this paper work very well for
the majority of DB2 queries that access data via a
clustered index and sequential prefetch. The techniques
also work well for transactions that add an internal
SORT to the processing just mentioned, although the
predicted CPU is approximately 300 percent of the actual
CPU. Transactions that efficiently use multiple index
access consume less CPU than those that need to access
index and data. It is also harder to predict their CPU.
Predicting the CPU for a simple JOIN is cumbersome
and tedious, but it can be done with some success. As in
the first paper, the importance of transaction
prototyping cannot be overemphasized.

APPENDIX A - RELATING CICS AND
DB2 STATISTICS

The performance data discussed in this paper was
obtained by examining the SMF records produced by
CICS and DB2. Relating ICS and DB2 performance data
for the simple transactions presented in this paper is a
straightforward task. Relating performance data for
more complex transactions, such as those involved in
dynamic plan switching, is a little trickier, but can be
accomplished. The records used are CICS statistics
(SMF110), DB2 system statistics (SMF100) and DB2
application accounting statistics (SMF101).

A detailed examination of the performance data for one
of the experiments will help to explain the relationships
between CICS and DB2 statistics. For each of the
experiments, CICS was cold-started, then DB2 was
started, then TPNS was started to begin transaction
execution. The DB2 subsystem was dedicated to
executing CICS transactions, hence all the performance
data was related to a particular CICS. At the end of the
experiment, TPNS was stopped, then CICS, and finally
DB2. The SMF data set was then switched and dumped,
containing all the necessary statistics.

CICS statistics are produced in four different flavors.
Interval statistics (INT) are produced at a user-defined
interval, or the default interval of every three hours. End
of day (EOD) statistics are a special kind of INT statistic,
and are produced at CICS shutdown, and at the end of
the day. The default end of day is midnight. Requested
(REQ) statistics are produced on demand, either via the
CEMT PERFORM STATISTICS transaction, or via an

